P8

Integrative Bioinformatic Tools for GRN Reconstruction

State of the art

Gene regulatory networks (GRNs) are essential for understanding gene expression regulation. Bioinformatics methods, including machine learning (e.g., SpaCeNet, Ensemble-GNN) and multi-omics integration (e.g., ATAC-seq, RNA-seq), have enhanced GRN reconstruction. Predicting transcription factor binding sites and leveraging databases (e.g., Reactome, ENCODE) further improve accuracy.

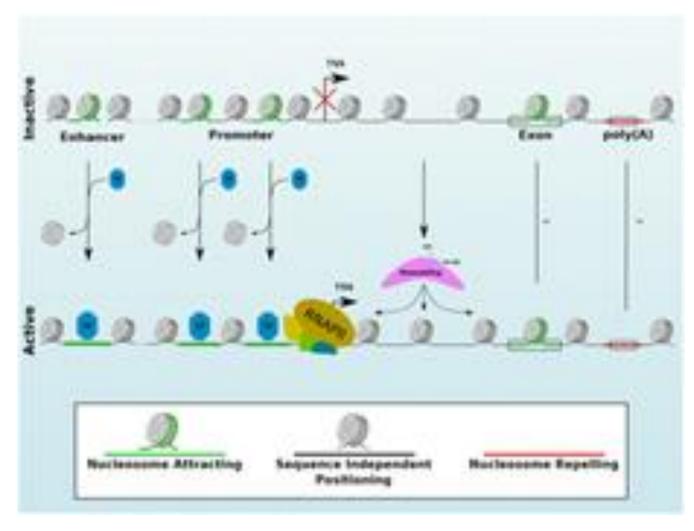


Figure 1: Regulatory Element prediction from DNA Structure Combing Structure information can make prediction much more accurate (Sahrhage et al. 2024).

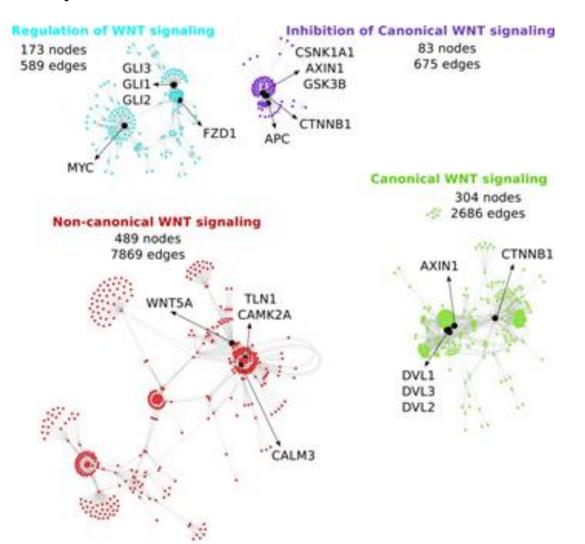
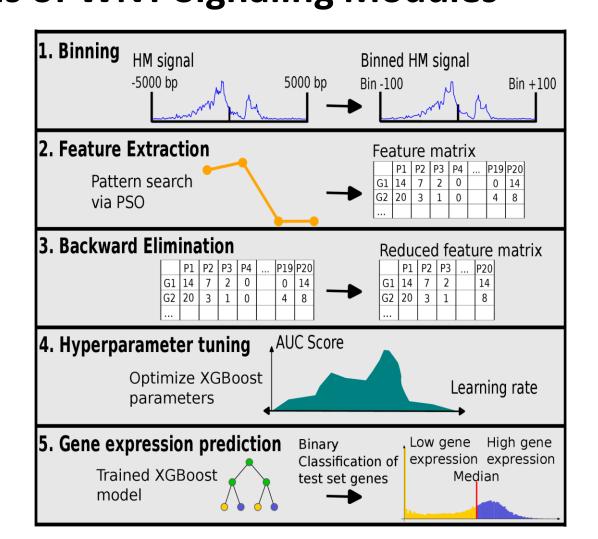


Figure 2: WNT Signaling in breast cancer
Prior knowledge from literature, other information is still crucial (Bayerlova et al 2015)

Primary Questions

- How to reconstruct GRNs from *Omics*-data of multiple model-species?
- Methods and GRN information are mainly available for model species (Mus musculus, Drosophila, Arabidopsis)
- Transfer to non-model species is essential and facilitated by databases like OrthoDB and ENCODE

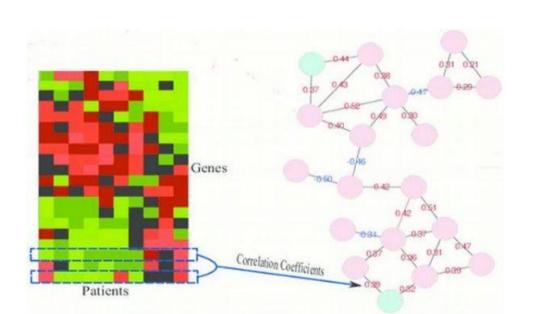

Objectives

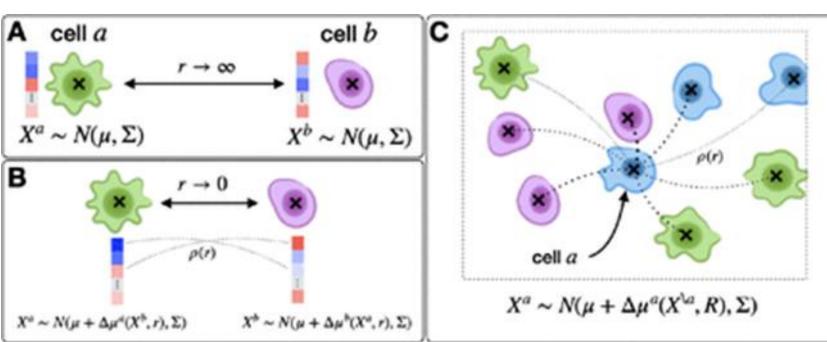
- Develop and apply bioinformatics methods for GRN reconstructing (open chromatin, transcription factor binding sites, *multi-omics* data, for the WNT signaling pathway)
- Reconstruction of GRNs using expression profile correlations, timeseries, and perturbation data to capture dynamic regulatory interactions
- Refinement of GRN models through cross-species comparisons identify conserved and divergent regulatory mechanisms
- Application and extension of GRN tools to GönomiX data

Workplan

A) Developing and Validating Bioinformatics Methods for GRN-Reconstruction and Cross Species Analysis of WNT Signaling Modules

- Developing and testing bioinformatic tools using publicly available datasets
- Enhancing WNT modules with bioinformatic predictions of gene regulatory elements (BERT modules) transferring to different species
- Constructing ML models to predict gene expression based on DNA sequence and ATAC-seq data
- Validating models with data from the consortium (e.g. Tribolium, Bucher lab)




Figure 3: Example workflow for predicting gene expression data, from promoter structure Information (Paul et al. submitted)

- B) Network reconstruction based on challenged networks Use of probabilistic GRN reconstruction models for Graphical Gaussian Models
- GRN reconstruction will use probabilistic methods (e.g., Schrod et al., 2024a) to build GGMs, addressing co-expression limits in identifying interaction direction.
- RNAi knock-down data (collaboration Bucher lab) will capture dynamic responses, enhancing insights into regulatory interactions.

C) Refining and Applying Cross-Species Network Reconstruction Methods using GönomiX Data

- Analyze multi-species RNA-seq, ATAC-seq, and single-cell data to improve models.
- Use evolutionary insights and experimental validation to refine models iteratively.

Figure 4: Principle of reconstructing GRNs based on correlation.

Figure 5: Example Workflow for GRN reconstruction using GGMs (Schrod et al, 2024)

D) Model development and Tools

- Developing an Integrated Cross-Species Wnt GRN Model
- Develop advanced bioinformatics tools for GRN reconstruction using RNA-seq, ATAC-seq, and single-cell sequencing data

Synergy and collaborations

- Collaborative Project 1: Wnt signaling in anterior development
 Comparision of direct WNT target genes and GRNs across species through coordinated
 RNA-seq and ATAC-seq time course experiments
- Collaborative Project 2: Reconstructing evolving GRNs

 Analyzing diverse omics data generated across all particular projects (RNA-seq, ATAC-seq, chromatin structure, single-cell RNA-seq). Reconstructing evolving gene regulatory networks by focusing on coordinated data gathering the anterior gene regulatory network in various species. Moreover:
- Collaborative Project 3: Novel bioinformatics and genetic tools

 Development of tools for bioinformatic analyses across clades; Enhancment of crossspecies comparision methods (in Collaboration with Project Partner 9)

Technical innovation

- Development of sophisticated bioinformatics tools for GRN reconstruction
- Integration of predictions of regulatory elements and facilitate cross-species GRN comparisons
- enhance study of WNT signaling pathways

Specific qualification

 Bioinformatics; Machine Learning; High-Throughput Omics Data Analysis; Systems Biology; Programming of Tools and Workflows.

References

- 1. Sahrhage M, Paul NB, Beißbarth T, Haubrock M. The importance of DNA sequence for nucleosome positioning in transcriptional regulation. Life Sci Alliance, 2024, 7(8):e202302380.
- 2. Bayerlová M, ..., Beißbarth T, Bleckmann A. Newly Constructed Network Models of Different WNT Signaling Cascades Applied to Breast Cancer Expression Data. *PloS One, 2015, 10:e0144014.*3. Paul NB, ..., Beißbarth T, Haubrock M. Prediction of gene expression using histone modification patterns extracted by Particle Swarm Optimization. *Bioinformatics, 2025, accepted.*
- 4. Schrod S, ..., Beißbarth T, ..., Altenbuchinger M. Spatial Cellular Networks from omics data with SpaCeNet. Genome Res, 2024, 34(9):1371-1383.
- 5. Schrod S, ... Beißbarth T, Hauschild AC, Altenbuchinger M. CODEX: COunterfactual Deep learning for the in silico EXploration of cancer cell line perturbations. Bioinformatics, 2024, 40(Suppl 1):i91-i99.

 6. Sitte M, ..., Beißbarth T. Reconstruction of Different Modes of WNT Dependent Protein Networks from Time Series Protein Quantification. Stud Health Technol Inform, 2019, 267:175-180.

